Moment inequality of the minimum for nonnegative negatively orthant dependent random variables
نویسندگان
چکیده
منابع مشابه
Rosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables
In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملThe inverse moment for widely orthant dependent random variables
In this paper, we investigate approximations of the inverse moment model by widely orthant dependent (WOD) random variables. Let {Zn,n≥ 1} be a sequence of nonnegative WOD random variables, and {wni , 1≤ i≤ n,n≥ 1} be a triangular array of nonnegative nonrandom weights. If the first moment is finite, then E(a + ∑n i=1wniZi) –α ∼ (a +∑ni=1wniEZi)–α for all constants a > 0 and α > 0. If the rth m...
متن کاملEstimation of the Survival Function for Negatively Dependent Random Variables
Let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nXn?F(x)=P[X>x]. The empirical survival function ()nFx based on 12,,...,nXXX is proposed as an estimator for ()nFx. Strong consistency and point wise as well as uniform of ()nFx are discussed
متن کاملstrong convergence of weighted sums for negatively orthant dependent random variables
we discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (nod) random variables by generalized gaussian techniques. as a corollary, a cesaro law of large numbers of i.i.d. random variables is extended in nod setting by generalized gaussian techniques.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2014
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1407475w